Неразруша́ющий контро́ль (НК) - контроль надёжности основных рабочих свойств и параметров объекта или отдельных его элементов/узлов, не требующий выведения объекта из работы либо его демонтажа.
Неразрушающий контроль можно также назвать оценкой надежности неразрушающими методами или проверкой без разрушения изделия. Неразрушающий контроль приобретает особое значение при создании и эксплуатации жизненно важных изделий, компонентов и конструкций.
Он выявляет различные изъяны, такие, как разъедание, ржавление, растрескивание. Неразрушающий контроль позволяет эффективно мониторить кондиции технических устройств, сооружений и зданий, дает возможность оценить своевременность и качество производимых ремонтных работ и работ по обслуживанию объекта. Неразрушающий контроль позволяет получить самые достоверные характеристики параметров, определяющих техническое состояние проверяемых объектов.
Основные методы неразрушающего контроля:
Выполнение строительно-монтажных работ и контроля над ними невозможно без точных измерений и определения показателей прочности конструкций. Это залог качества. Контроль качества строительства, осуществляемый в ходе технадзора, подразумевает постоянные измерения и оценку прочности и проводится постоянно. Это гарантирует соответствие проекту геометрических параметров сооружения в пределах определенных допусков, а также прочность и долговечность конструкций. Качественно выполненные контрольные мероприятия влияют не только на качество объекта, но и на затраты на производство строительно-монтажных работ.
Оценка качества строительно-монтажных работ невозможна без достоверной информации о геометрических параметрах сооружений и конструкций, оценки прочности бетона и кирпича, других материалов, определения наличия дефектов в толще конструкций и узлов. Эту информацию можно получить только в результат измерений. Измерения в строительстве проводятся различными методами, с использованием различных приборов и инструментов.
Давайте поговорим подробнее о методах неразрушающего контроля.
Основаны на регистрации и анализе параметров упругих волн, возникающих или возбуждаемых в объекте контроля. Объектом контроля могут быть материалы, полуфабрикаты и готовые изделия. Когда используются волны ультразвукового диапазона, методы можно назвать ультразвуковыми. Методы акустического контроля основаны на свойстве упругих волн создавать тесные связи с некоторыми свойствами материалов (анизотропией, плотностью, упругостью и др.) Поскольку акустические свойства твердых веществ и воздуха значительно разнятся, становится возможным выявление с помощью акустических методов неразрушающего контроля малейших дефектов, определение качества шлифовки и толщины поверхностей.
Сфера применения акустических методов довольно широка. Идею, связанную с регистрацией и анализом параметров упругих волн используют ультразвуковые дефектоскопы. Их применение имеет широкую область: все, проводящие акустические волны материалы. Методы контроля делятся на активные и пассивные, в зависимости от характера взаимодействия с контролируемым объектом. В первом случае исследуются волны, которые возникают в самом объекте, в этом случае по шумам работающего устройства можно сказать о его исправности, неисправности и даже определить характер неисправности. К активным методам относятся способы, базирующиеся на измерении интенсивности пропускаемого или отражаемого объектом акустического сигнала.
Акустические методы неразрушающего контроля используются для обнаружения как внутренних, так и поверхностных дефектов (нарушений сплошности, неоднородности структуры, межкристаллитной коррозии, дефектов склейки, пайки, сварки и т.п.). Этот метод дает возможность измерять геометрические параметры, когда доступ к изделию затруднен, а также физико-механические свойства металлов и изделий из них без их разрушения. Методы звукового диапазона (импедансный, свободных колебаний и др.) методы ультразвукового диапазона (эхо-импульсный, резонансный, теневой, эмиссионный, велосиметрический.
Магнитные методы неразрушающего контроля
Магнитные методы неразрушающего контроля предполагают анализ взаимодействия контролируемого объекта с магнитным полем. Их используют чаще всего для обнаружения внутренних и поверхностных дефектов объектов, выполненных из ферромагнитных материалов. Основные магнитные методы неразрушающего контроля – магнитопорошковый, феррозондовый, индукционный и магнитографический метод. Самый распространенный из способов неразрушающего контроля – магнитопорошковый. Он основывается на явлении неоднородности магнитного поля над местом дефекта.
Чтобы произвести контроль магнитопорошковым методом, готовят сначала поверхность контролируемого объекта, намагничивают ее и обрабатывают магнитной суспензией. Металлические частицы в неоднородном магнитном поле над повреждением притягиваются друг к другу, образуя цепочные структуры, которые сразу выявляются при осмотре деталей. Магнитно-порошковый метод широко применяется на заводах промышленности, ремонтных предприятиях. Он дает возможность выявить поверхностные трещины, микротрещины, волосовины, флокены и другие дефекты.
Остальные методы имеют схожий принцип, только вместо магнитного порошка в разных случаях для создания и регистрации магнитного поля используется катушка индуктивности (индукционный метод), магнитная лента и датчик с магнитной головкой (магнитографический метод), феррозондовый датчик, который регистрирует поля рассеивания (феррозондовый метод). Магнитографический метод чаще всего используют для контроля сварных соединений. Он дает возможность выявлять трещины, непровары, шлаковые и газовые включения и другие дефекты в сварных швах.Феррозондовый метод используется для обнаружения тех же дефектов, что и магнитопорошковый метод. Он позволяет также определять дефекты на глубине до 20 мм, с его помощью измеряют толщину листов и стенки сосудов, при наличии двухстороннего доступа.
Метод неразрушающего контроля проникающими веществами связан с проникновением в полость дефекта объекта, подлежащего контролю, специальных веществ. Этот метод называют капиллярным, когда речь идет о выявлении малозаметных трещин на поверхности, а при поиске сквозных способ называют «метод течеискания». При применении этого метода дефекты, окрашенные индикаторной жидкостью (пенетрантом), выявляются либо визуально, либо с помощью преобразователей.
Первоначально поверхность контролируемого объекта очищают механическим и/или химическим методом, затем наносят на нее индикаторную жидкость, заполняющую полости дефектов. Излишки пенетранта удаляют. На поверхность наносят проявитель, который выявляет признаки дефектов. Этот метод высокочувствительный, он обеспечивает простоту контроля и наглядность результатов, поэтому его применяют не только для обнаружения, но и для подтверждения дефектов, обнаруженных другими методами – ультразвуковым, магнитным и вихревых токов и другими. Из капиллярных методов наиболее распространены цветной, люминесцентный, люминесцентно-цветной, фильтрующихся частиц, радиоактивных жидкостей.
Методы течеискания базируются на регистрации индикаторных жидкостей и газов, которые проникают в сквозные дефекты контролируемого объекта. Широкое применение они нашли для контроля герметичности работающих под давлением сварных сосудов, баллонов, трубопроводов, гидро-, топливо-, масляных систем силовых установок и т.п. Наиболее известные методы течеискания: гидравлическая опрессовка, аммиачно-индикаторный метод, фреоновыф, масс-спектрометрический, пузырьковый, с помощью гелиевого и галоидного течеискателей. Течеискание с помощью радиоактивных веществ значительно повлияло на эффективность метода в сторону ее увеличения.
Вихретоковые методы неразрушающего контроля предполагают исследование взаимодействия электромагнитного поля вихретокового преобразователя с наводимым в объекте контроля электромагнитным полем вихревых токов с частотой до 1 млн. Гц.
Этот метод служит для контроля объектов, изготовленных из проводников тока. Метод позволяет получить информацию о химическом составе и геометрическом размере изделия, о структуре материала, из которого объект изготовлен, и обнаружить дефекты, залегающие на поверхности ли в подповерхностном слое ( на глубине 2-3 мм). Наиболее часто используемый прибор этого метода –вихретоковый дефектоскоп. Принцип контроля –следующий. Катушка индуктивности возбуждает в объекте контроля вихревые токи. Их регистрирует приемные измеритель, в роли которого выступает та же самая или другая катушка. Интенсивность распределения токов в контролируемом объекте дает возможность судить о размерах изделия, свойствах материала, наличии несполошностей.
Основными методами вихретокового контроля также являются метод рассеянного излучения, который построен на регистрации рассеянных волн или частиц, отраженных от дефекта, и эхо-метод, или метод отраженного излучения, базирующийся на регистрации отраженных от дефекта поля и волны.
На основе метода вихревых токов разработаны и широко применяются приборы для измерения толщины листов и покрытий, диаметра проволоки и прутков. Этот метод применяется для профилактического контроля лопаток турбин газотурбинных двигателей, сварных и литых узлов элементов конструкций и др.
Это один из самых современных методов неразрушающего контроля. Он дает возможность следить за состоянием оборудования, не останавливая работу и не прерывая производственный процесс. Вибродиагностический метод контроля базируется на анализе вибрации, которая возникает при работе оборудования. Поскольку любая вибрация – это колебания, она представляет собой совокупность различных частот, которые можно изучить, узнать их амплитуды и по этим показателям определить, в каком состоянии находится оборудование. Конечно, всю эту информацию собирают с помощью высокочувствительной аппаратуры.
Вибродиагностический метод используют при контроле работы оборудования, имеющего в конструкции подшипники качения, гидрооборудование, колесно-редукторные блоки. С помощью этого метода регулярно производят диагностику цилиндров низкого давления, паровых турбин, «кручения» ригелей фундаментов турбин, статорных систем и т.д. Вибродиагностка применяется в энергодобывающих компаниях, на железнодорожном и морском транспорте и в области жилищно-коммунального хозяйства.
Этот метод диагностики позволяет проводить вибрационный контроль и мониторинг вращающегося оборудования, осуществлять тестовую диагностику и центровку машин, балансировку машин на месте эксплуатации, диагностику механических передач, электрических машин, выявлять дефекты подшипников скольжения и качения, ременных и зубчатых передач, дефекты компрессоров, насосов и вентиляторов, этому способу диагностики под силу даже обнаружить дефекты смазки.
Электрические способы неразрушающего контроля построены на регистрации и анализе параметров электрического поля, взаимодействующего с проверяемым объектом или возникающего в результате воздействия извне. Информативные параметры для контроля в первую очередь, – это потенциал и емкость. Для контроля проводниковых материалов используют эквипотенциальный метод, контроль проводников и диэлектриков производят с помощью емкостного метода, химический состав материала можно определить с помощью термоэлектрического метода. Помимо перечисленных способов электрического неразрушающего контроля существуют методы электронной эмиссии, электроискровой, электростатического порошка, трибоэлектрический, термоэлектрический.
Электрические методы неразрушающего контроля дают возможность выявить раковины и другие дефекты в отливках, расслоения в металлических листах, различные дефекты сварных и паяных швов, трещины в металлических изделиях, растрескивания в эмалевых покрытиях и органическом стекле. Помимо этого электрические способы контроля используются для сортировки деталей, измерения толщин пленочных покрытий, проверки химического состава и определения степени термообработки металлических изделий.
Тепловые методы неразрушающего контроля используют регистрацию тепловых полей, температуры или теплового контраста для анализа состояния изучаемого объекта. Ведь температурное поле есть следствие происходящих в объекте процессах теплопередачи. Особенности этих процессов зависят от наличия дефектов (как внутренних, так и наружных). Параметр, который дает основную информацию о неблагополучии- разность температур между областями с дефектом и бездефектными областями исследуемого объекта. Температуру измеряют контактным и бесконтактным методом. Помимо измерения температур тепловые методы дают информацию о нарушениях сплошности, дефектах пайки многослойных соединений. Приборы, которые используются при осуществлении контроля – термоиндикаторы, пирометры, инфракрасные микроскопы и радиометры.
Тепловые методы контроля используются в основном в приборостроении для контроля радиоэлектронной аппаратуры.
Радиоволновые методы неразрушающего контроля базируются на анализе изменения параметров электромагнитных колебаний, которые взаимодействуют с контролируемым объектом. Эти методы применяются для контроля диэлектриков, полупроводников, магнитодиэлектриков или тонкостенных объектов из металла – то есть тех объектов, которые изготовлены из материалов, не заглушающих радиоволны. Эти методы применяются для контроля качества и геометрических размеров изделий из стеклопластики и пластмассы, резины, термозащитных и теплоизоляционных материалов, фибры).
Радиоволновые методы неразрушающего контроля разделяют на несколько групп по характеру взаимодействия объекта с волной: прохождения, отражения и рассеивания; по параметру, который взят за основу при исследованиях: фазовые, геометрические, амплитудно-фазовые и поляризационные. Это весьма перспективные методы, пока не нашедшие должного применения в промышленности. Они дают возможность обнаружить непроклеи, расслоения, воздушные включения, трещины, неоднородности по плотности, напряжения, с их помощью можно измерять геометрические размеры и т.п.
Эти методы включают в себя регистрацию и анализ взаимодействующего с объектом проникающего ионизирующего излучения. Название «радиационные» может меняться на «рентгеновские, «нейтронные» и другие в зависимости от вида ионизирующего излучения. Чаще всего для контроля используется гамма- и рентгеновское излучение. Работа большинства методов основывается на том, что в местах дефектов возрастает плотность потока излучения. Радиационные методы неразрушающего контроля используют при контроле качества сварных и паяных швов, литья, определения качества сборочных работ, выяснения состояния закрытых полостей агрегатов и т.п. Наиболее распространенные радиационные методы – это рентгенография, рентгеноскопия и гамма-контроль.
Оптические методы неразрушающего контроля регистрируют и анализируют параметры, присущие взаимодействующему с объектом оптическому излучению. Эти методы дают возможность обнаруживать пустоты, поры, расслоения, трещины, инородные включения, геометрические отклонения и внутренние напряжения в объектах контроля.
Наружный оптический контроль применяют для обнаружения дефектов практически из любого материалов. Внутренние дефекты с помощь этого метода можно обнаружить только в прозрачных материалах. Также производится контроль диаметров и толщины с помощью оптического способа, базирующегося на явлении дифракции. Шероховатость и сферичность выявляют методы, основанные на явлении интерференции.
Преимущества оптических методов неразрушающего контроля в их простоте, применении несложного оборудования и относительно небольшой трудоемкости. Поэтому они нашли применение на различных стадиях изготовления деталей и элементов конструкций.
Оптические приборы обладают невысокой чувствительностью и достоверностью, поэтому используются только для определения достаточно крупных трещин, коррозионных и эрозионных повреждений, открытых раковин, забоин. Они применяются также для обнаружения течей, загрязнений, наличия посторонних предметов и т.д.
В строительстве методы неразрушающего контроля используются при измерении различных строительных элементов, строительных конструкций зданий и сооружений на отдельных этапах выполнения и после всех работ, контроле оборудования, приспособлений и оснастки для изготовления и монтажа элементов, разбивочных сетей и их элементов. Неразрушающий контроль используется при выполнении линейных измерений, геодезическом контроле качества выполнения строительно-монтажных работ, при определении прочности бетона методом ударного импульса или методом отрыва со скалыванием или скалыванием ребра, при определении защитного слоя бетона, при тепловизионном контроле качества устройства ограждающих конструкций и в других случаях.